Российская Информационная Сеть
25 января, 13:44

Экспериментально подтверждена телепортация на один метр

Экспериментально подтверждена телепортация на один метр Явление квантовой телепортации - передачи квантовой информации на расстояние от одного носителя другому - уже наблюдалось на практике в случае двух фотонов, фотонов и группы атомов, а также двух атомов. Однако ни один из этих способов не подходил для практического использования.

Наиболее реалистичной и легко реализуемой на этом фоне выглядит схема, предложенная специалистами изУниверситета Мэриленда (США). Ученым удалось осуществить перемещение квантовой информации между двумя атомами, расположенными в метре друг от друга, причем показатель надежности доставки превысил 90 процентов. "На основе нашей системы можно сконструировать крупномасштабный "квантовый повторитель", который будет использоваться для передачи информации на большие расстояния", - представляет новую разработку Кристофер Монро (Christopher Monroe), возглавивший исследования.

Физическую реализуемость квантовой телепортации обеспечивает свойство квантовой запутанности, выражающееся в том, что состояния (а следовательно, и некоторые физические свойства) двух связанных объектов - даже разнесенных в пространстве - оказываются взаимозависимыми. В эксперименте американских ученых связанными оказались два иона иттербия, помещенные в вакуумные ловушки и окруженные металлическими электродами (см. рисунок). Непосредственно перед проведением опыта исследователи определили два основных состояния ионов, которые использовались в качестве элементов хранения квантовой информации - кубитов.

В начале эксперимента ионы (назовем их А и Б) находились в одном из основных состояний. Затем на ион А направлялось микроволновое излучение, испускаемое одним из электродов; в результате кубит оказывался в некоторой суперпозиции своих собственных состояний (происходила запись информации для передачи). Сразу после этого оба иона возбуждались лазерным импульсом пикосекундной длительности. Возврат в одно из основных состояний - "значений" кубита - проходил с испусканием фотонов, "цвет" которых (красный или синий), соответствовавший разным длинам волн, однозначно определял конкретное значение. Затем фотоны с помощью линз направлялись по оптоволоконному кабелю к светоделительному элементу; при попадании на него каждая частица могла либо отразиться, либо пройти напрямую (вероятности этих событий одинаковы). По обеим сторонам светоделителя располагались детекторы.

До попадания на светоделитель каждый из фотонов находился в неизвестной суперпозиции состояний, однако в детекторе могли быть зарегистрированы уже только четыре различных вида частиц, соответствующих цветовым комбинациям "синий-синий", "синий-красный", "красный-синий" и "красный-красный", и лишь в одном из указанных вариантов фотоны одновременно достигают обоих детекторов. В этом случае определить, какому иону "принадлежит" данный квант света, становится невозможно (не хватает информации о том, отразился фотон от светоделителя или прошел насквозь). Такая неопределенность и сигнализирует о том, что квантовые состояния ионов оказались связаны.

Достигнув этого результата, ученые определили состояние иона А. В полном соответствии с законами квантовой механики, измерение вывело его из суперпозиции в некоторое определенное состояние, причем ион Б при этом принял противоположное "значение". Зная выходное состояние кубита А, исследователи установили параметры микроволнового импульса, при воздействии которым на кубит Б из него извлекалась информация, записанная на первой стадии эксперимента. На этом процесс телепортации завершился.

Заметим, что исходное состояние иона А в процессе передачи разрушается; именно это отличает данный процесс от копирования и позволяет применять термин "телепортация".

Полная версия отчета ученых опубликована в текущем выпуске журнала Science.

автор: Дмитрий Сафин

nbsp;RIN 2000-